

C14-M-304

4252

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV-2017 DME—THIRD SEMESTER EXAMINATION

BASIC THERMODYNAMICS

Time: 3 hours [Total Marks: 80

PART—A

3×10=30

Instructions: (1) Answer all questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- (4) Assume missing data where ever necessary.
- 1. Define state and system.

 $1\frac{1}{2}+1\frac{1}{2}$

2. Define enthalpy and internal energy.

 $1\frac{1}{2}+1\frac{1}{2}$

- **3.** State Kelvin-Planck statement.
- 4. State Avogadro's law.
- **5.** Explain each term in the relation

$$C_V = \frac{R}{1}$$

- **6.** Show that heat transferred is equal to change in enthalpy, for a constant pressure process. $1\frac{1}{2}+1\frac{1}{2}$
- 7. Define entropy and write its unit.

2+1

- **8.** Define higher calorific value.
- **9.** Write the solutions used to absorb CO_2 , O_2 and CO in Orsat apparatus. 1+1+1
- **10.** Write any three advantages and three disadvantages of liquid fuels. ?????????? $1\frac{1}{2}+1\frac{1}{2}$

PART—B

 $10 \times 5 = 50$

Instructions: (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- (4) Assume missing data where ever necessary.
- 11. The pressure of the fluid in a system is the linear function of volume given by the equation, P a bv, where a and b are constants and P is in kN/m², and v is in m³. If the system changes from initial condition of 200 kN/m² and 0.1 m^3 the final condition of 500 kN/m² and volume of 0.4 m^3 , determine the work transfer.
- **12.** (a) Heat is supplied to a heat engine at the ratio of 70 kJ/s giving an output of 30 kW. Calculate thermal efficiency and the rate at which heat is rejected.
 - (b) Derive characteristic gas equation.

5 5

13. A mass of air has an initial pressure of $2.3 \text{ MN} / \text{m}^2$, volume of 0.016 m^3 and temperature = $150 \, ^{\circ}\text{C}$. It is then expanded until

 its final pressure is $475 \, \mathrm{kN} \, / \, \mathrm{m}^2$ and its volume becomes 0 $078 \, \mathrm{m}^3$. Determine—

- (a) the mass of air;
- (b) the final temperature of air.

Take $R = 0.287 \text{ kJ/kg}^{\circ}\text{k}$

2+2+3+3

- **14.** Derive the expression for (a) work transfer and (b) change in entropy in an isothermal process. 5+5
- **15.** A quantity of gas has an initial pressure, volume and temperature of 240 kN / $\rm m^2$, 0·4 $\rm m^3$ and 25 °C respectively. It is expanded to a pressure of 140 kN / $\rm m^2$ according to the law PV^{135} C. Determine—
 - (a) the change in entropy;
 - (b) work transfer to the gas;
 - (c) heat transfer from the gas.

[Take C_p 1 005 kJ/kg°k and C_V 0 715 kJ/kg°k]

2+4+4

- **16.** A 2 kg of air at a pressure of 850 kN / m^2 occupies a volume of 2 m^3 . The air is then expanded to a pressure of 300 kN / m^2 at constant volume. Find the—
 - (a) work done;
 - (b) heat transfer;
 - (c) change in entropy during expansion.

[Take $R = 0.287 \text{ kJ/kg}^{\circ}\text{k}$ and $C_{v} = 0.717 \text{ kJ/kg}^{\circ}\text{k}$]

2+5+3

17. Write about Junker's calorimeter with a neat sketch.

5+5

- **18.** The percentage composition of a sample of fuel by mass is found to be C = 76%, H_2 5 2%, O_2 12 8%, N_2 2 7%, S_2 1 2% and remaining ash. Calculate—
 - (a) the minimum amount of air required for complete combustion of one kg of fuel;
 - (b) percentage composition by mass of dry products of combustion. 5+5

* * *