Question Paper Preview

Question Paper Name:Electrical and Electronics EngineeringSubject Name:Electrical and Electronics Engineering

Mathematics

Number of Questions:50Display Number Panel:YesGroup All Questions:No

Question Number: 1 Question Id: 6780949005 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If the traces of A and B are 20 and -8 then the trace of (A+B) is ____

Options:

- , 12
- , -12
- , 28
- , -28

Question Number : 2 Question Id : 6780949006 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

If $A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$ is an involutory matrix then $x = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$

Options:

- , 0
- 2. -2
- 3 -1
- , 2

Question Number: 3 Question Id: 6780949007 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The determinant of
$$\begin{bmatrix} \log e & \log e^2 & \log e^3 \\ \log e^2 & \log e^3 & \log e^4 \\ \log e^3 & \log e^4 & \log e^5 \end{bmatrix}$$
 is ____

Options:

- 4 loge
- 5loge

Question Number: 4 Question Id: 6780949008 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

If
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 3 \\ 0 & 1 & 2 \end{bmatrix}$$
 then $\det(adjA) =$ ____

Options:

- $\det A$
- $\det A^2$
- $(\det A)^2$

Question Number: 5 Question Id: 6780949009 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

If A, B are two matrices and AB=B, BA=A then $A^2 + B^2 =$

If
$$\frac{3x+2}{(x+1)(2x^2+3)} = \frac{A}{x+1} + \frac{Bx+C}{2x^2+3}$$
, then $A+C-B =$ _____

Options:

- , (
- ຸ 2
- 3 3
- ₄ 5

Question Number: 7 Question Id: 6780949011 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If
$$\frac{3x}{(x-a)(x-b)} = \frac{2}{x-a} + \frac{1}{x-b}$$
 then $a:b =$ ____

Options:

- $_{1}$ -2:1
- , 2:1
- , 1:2
- 4. 3:1

Question Number: 8 Question Id: 6780949012 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The value of tan 855° = ____

Options:

- 1. 1
- $\frac{1}{\sqrt{2}}$
- , -1

255

Question Number: 9 Question Id: 6780949013 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If
$$\tan \alpha = \frac{m}{m+1}$$
 and $\tan \beta = \frac{1}{2m+1}$ then $\tan(\alpha + \beta) = \underline{\hspace{1cm}}$

- _ _1
- , 0
- , 1
- 4 2

Question Number: 10 Question Id: 6780949014 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The value of $6\sin 20^{\circ} - 8\sin^3 20^{\circ} =$

Options:

- , 2
- $\frac{1}{\sqrt{2}}$
- ₃ √3
 - $\frac{1}{\sqrt{3}}$

Question Number: 11 Question Id: 6780949015 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If $3\sin\theta + 4\cos\theta = 5$ then the value of $4\sin\theta - 3\cos\theta =$

Options:

- 1. 0
- 2 -1
- , 1
- , 2

Question Number: 12 Question Id: 6780949016 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The sine function with period 3 is

- $sin\frac{2\pi x}{3}$
- $\sin \frac{\pi x}{x}$

 $\sin 3\pi x$

3.

$$\sin \frac{3\pi x}{2}$$

Question Number: 13 Question Id: 6780949017 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The maximum value of $3\sin^2 x + 5\cos^2 x$ is _____

Options:

- 8
- , 3
- , 5
- 4 34

Question Number: 14 Question Id: 6780949018 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The equation $\sqrt{3}\sin x + \cos x = 4$ has ____

Options:

- Only one solution
- two solutions
- , Infinite solutions
- no solution

Question Number: 15 Question Id: 6780949019 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The solution of $\cos^{-1}(\sqrt{3}x) + \cos^{-1}x = \frac{\pi}{2}$ is ____

- $\frac{1}{2}$
- 5
- _1
- 3.

Question Number: 16 Question Id: 6780949020 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The value of $\sin \theta + \sin(\theta + 120^\circ) - \sin(120^\circ - \theta) =$

Options:

- , 0
- $\sin \theta$
- 3 1
- $-\sin\theta$

Question Number: 17 Question Id: 6780949021 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The principal solution of 3CosecA = 4SinA is _____

Options:

- $\frac{\pi}{4}$
- $\pm \frac{\pi}{3}$
- $\pm \frac{\pi}{6}$
- $\pm 2\pi$

Question Number: 18 Question Id: 6780949022 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If
$$|z^2 - 1| = |z|^2 + 1$$
, then z lies in _____

- The real axis
- , a circle
- The imaginary axis
 - a parabola

Question Number: 19 Question Id: 6780949023 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If
$$\left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3 = a+ib$$
, then a an b are _____

Options:

- 1 1,1
- 2,-2
- , 0,-2
- 0,-1

Question Number : 20 Question Id : 6780949024 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

If the line y = 2x + c is a tangent to $x^2 + y^2 = 5$ then the value of c is _____

Options:

- , 2
- 2 3
- 3 4
- 4 5

Question Number : 21 Question Id : 6780949025 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

The vertex of the parabola $x^2 + 8x + 12y + 4 = 0$ is

Options:

- (-4,1)
- (4,-1)
- (-4,-1)
- 4. (4.1)

Question Number : 22 Question Id : 6780949026 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

The number of tangents to the ellipse $\frac{x^2}{4} + \frac{y^2}{2} = 1$ through (2,1) is _____

Options:

1. 0

- .
- , 2
- 4

Question Number : 23 Question Id : 6780949027 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

The length of the latus rectum of the hyperbola $x^2 - 4y^2 = 4$ is _____

Options:

- , 2
- . 1
- 3 4

Question Number: 24 Question Id: 6780949028 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

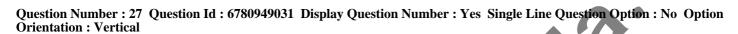
The length of the diameter of the circle $x^2 + y^2 - 6x - 8y = 0$ is _____

Options:

- , 10
- , 15
- 3 5
- , 20

Question Number: 25 Question Id: 6780949029 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If the line 2y = 6x + k touches the parabola $y^2 = 6x$ then k =____


- 2
- 1.
- 3
- 3
- 3. 5
 - 6
- 4

Question Number : 26 Question Id : 6780949030 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

$$\lim_{x \to 2+} \frac{x |x-2|}{x-2} = \underline{\hspace{1cm}}$$

Options:

- 1 1
- -1
- , 2
- ₄ –2

If $f(x) = (1+x)^{\frac{2}{x}}$ is continuous at x = 0 then $f(0) = \frac{1}{x}$

Options:

- 1. e
- e^2
- , e3
- , e4

Question Number : 28 Question Id : 6780949032 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

If $x = a \sec \theta$, $y = b \tan \theta$ then $\frac{dy}{dx} =$ _____

- $\frac{b}{a}\sec\theta$
- $\frac{b}{\theta}$ cosec θ
- $\frac{a}{b}\sec\theta$
 - $\frac{a}{b}$ cosec θ

If
$$x^y = e^{x-y}$$
 then $\frac{dy}{dx} =$ ____

Options:

$$\frac{\log x}{(1+\log x)^2}$$

$$\frac{\log x}{(1-\log x)^2}$$

$$\frac{-\log x}{(1+\log x)^2}$$

$$\frac{-1}{(1+\log x)^2}$$

Question Number: 30 Question Id: 6780949034 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

If
$$y = \sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)$$
 then $\frac{dy}{dx} =$ ____

Options:

$$-\frac{1}{1+x^2}$$

$$\frac{1}{1+x^2}$$

$$\frac{2}{1+x^2}$$

Question Number: 31 Question Id: 6780949035 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

The slope of the normal to the curve $x = a \sec \theta$, $y = a \tan \theta$ at $\theta = \frac{\pi}{6}$ is _____

- , 2
- , (
- $-\frac{1}{2}$

Question Number: 32 Question Id: 6780949036 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The rate of change of area of a circle with respect to radius when r=5cm is

Options:

- 2π sq.cm/sec
- 10π sq.cm/sec
- $_{3}$ 100 π sq.cm/sec
- $_{4}$ 20π sq.cm/sec

Question Number: 33 Question Id: 6780949037 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Which of the following function has maxima or minima?

Options:

- $1 e^{x}$
- loga
- $x^3 + x^2 + x + 1$
- $\sin x$

Question Number : 34 Question Id : 6780949038 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

If the increase in the side of a square is 2% then the approximate percentage increase in the area of the square is _____

- 1 2
- 2 4
- , 6
- , 8

For the function $f(x) = \log(x^2 + y^2)$, which of the following is true?

Options:

$$f_x + f_y = 0$$

$$f_{xx} + f_{yy} = 0$$

$$f_x - f_y = 0$$

$$f_{xx} - f_{yy} = 0$$

Question Number: 36 Question Id: 6780949040 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

$$\int \csc^5 \theta \cot \theta d\theta = \underline{\hspace{1cm}}$$

Options:

$$\frac{\cot^2 \theta}{2}$$

$$\frac{-\csc^5\theta}{}$$

$$\frac{\csc^6 \theta}{6}$$

$$-\csc^6\theta$$

Question Number: 37 Question Id: 6780949041 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

$$\int_{2}^{3} \frac{dx}{x^{2}}$$

$$\log \frac{2}{3}$$

$$\log \frac{4}{3}$$

$$\log \frac{8}{3}$$

$$log \frac{1}{4}$$

.

Question Number : 38 Question Id : 6780949042 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

If a < 0 < b then $\int_{a}^{b} \frac{|x|}{x} dx = \underline{\qquad}$

Options:

- b-a
- a-b
- a+b
- 4. 0

Question Number : 39 Question Id : 6780949043 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

$$\int_{0}^{1} x \tan^{-1} x dx = \underline{\qquad}$$

Options:

$$\frac{\pi}{4} - \frac{1}{2}$$

$$\frac{\pi}{8} - \frac{1}{2}$$

$$\frac{\pi}{-} + \frac{1}{-}$$

$$\frac{\pi}{8} + \frac{1}{2}$$

Question Number : 40 Question Id : 6780949044 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

$$\lim_{n\to\infty} \sum_{r=1}^{n} \frac{1}{n} e^{\frac{r}{n}} = \underline{\qquad}$$

- (1+e)
- (1-e)
- 4. (e−1)

Question Number: 41 Question Id: 6780949045 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

$$\int_{0}^{\pi/4} \sec^6 x dx = \underline{\qquad}$$

Options:

- 8
- 1. 3
- 28
- _28
- 3. 15
 - $\frac{4}{5}$

The area bounded by the curve $y = \log x$, x-axis and the straight line x-e=0 is square units

Options:

- 1. e
- (e-1)
- 3 0
- (1-e)

Question Number: 43 Question Id: 6780949047 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The volume of the solid generated by rotating one arch of the curve y = Sin3x about the x-axis is----

- π^2
- 41

$$\frac{\pi^2}{2}$$

$$\frac{\pi^2}{1}$$

$$\frac{\pi^2}{6}$$

Question Number: 44 Question Id: 6780949048 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

 $y = cx - c^2$ is the general solution of the differential equation

Options:

$$\left(\frac{dy}{dx}\right)^2 - x\left(\frac{dy}{dx}\right) + y = 0$$

$$\frac{d^2y}{dx} = 0$$

$$\frac{dy}{dy} = c$$

$$\frac{dy}{dx} = c$$

$$\left(\frac{dy}{dx}\right)^2 + x\left(\frac{dy}{dx}\right) + y = 0$$

Question Number: 45 Question Id: 6780949049 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

The general solution of the differential equation $\frac{dy}{dx} + \frac{y}{3} = 1$ is

$$y = 3 + ce^{2}$$

$$v = 3 + ce^{-\frac{x}{3}}$$

$$3y = c + e^{\frac{x}{3}}$$

$$3y = c + e^{-\frac{x}{3}}$$

Question Number: 46 Question Id: 6780949050 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The differential equation corresponding to the family of curves $y = ae^{bx}$, where a and b are arbitrary constants, is ____

Options:

$$\frac{d^2y}{dx^2} = y\frac{dy}{dx}$$

$$y\frac{d^2y}{dx^2} - \frac{dy}{dx} = 0$$

$$y\frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2$$

$$\frac{dy}{dx} - y^2 = 0$$

An integrating factor of the differential equation

$$(x^2y + y + 1)dx + (x + x^3)dy = 0$$
 is

Options:

- e^{x}
- x^2
- $\frac{1}{x}$
- r

Question Number: 48 Question Id: 6780949052 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The differential equation whose solution is $Ax^2 + By^2$, where A,B are arbitrary constants are of ----

Options:

1st order and 1st degree

- 2nd order and1st degree
- 2nd order and 2nd degree
- ₄ 1st order and 2nd degree

Question Number : 49 Question Id : 6780949053 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

The general solution of the differential equation $\frac{d^2x}{dt^2} - 4\frac{dx}{dt} + 5x = 0$ is

Options:

$$x = (c_1 \cos t + c_2 \sin t)e^{2t}$$

$$t = (c_1 \cos x + c_2 \sin x)e^{2x}$$

$$x = (c_1 \cos 2t + c_2 \sin 2t)e^t$$

$$t = (c_1 \cos 2x + c_2 \sin 2x)e^x$$

Question Number: 50 Question Id: 6780949054 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The particular integral of $(D-2)^2 x = \sin 2x$ is

Options:

$$\frac{\cos 2x}{8}$$

$$\frac{\sin 2x}{8}$$

$$\frac{-\cos 2x}{2}$$

Number of Questions: Display Number Panel: Group All Questions: 25

Yes No Question Number: 51 Question Id: 6780949055 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The unit of impulse is the same as that of

Options:

- moment of force
- linear momentum
- force
- pressure

Question Number: 52 Question Id: 6780949056 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If the force is given by F = at+bt² where t is the time. The dimensions of a and b are

Options:

$$ML^2T^{-3}$$
, ML^2T^{-2}

$$ML^{2}T^{-3}$$
, $ML^{3}T^{-4}$

Question Number: 53 Question Id: 6780949057 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Vector parallel to $6\hat{i} + 8\hat{j}$ and having a magnitude of 5 is

Options:

$$4\hat{i} + 3\hat{j}$$

$$12\hat{i} + 16\hat{j}$$

$$\frac{16i + 8j}{3}$$

$$3\hat{\imath} + 4\hat{\jmath}$$

Question Number: 54 Question Id: 6780949058 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If $|\vec{A} \times \vec{B}| = K(AB)$ then angle between \vec{A} and \vec{B} is

```
cos<sup>-1</sup>K
```

Question Number: 55 Question Id: 6780949059 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A cricket ball is thrown at a speed of 28 m/s in a direction 30⁰ above the horizontal. The maximum height reached by the ball is

Options:

- , 10 m
- , 20 m
- 30 m
- 40 m

Question Number : 56 Question Id : 6780949060 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Two bodies are projected at angles of 45° and 60° with the horizontal with same velocity simultaneously. Ratio of their horizontal ranges is

Options:

- √3:2
- 2:√3
- , 1:2
- . 2:1

Question Number: 57 Question Id: 6780949061 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A ball thrown by a boy is caught 2 seconds later by another at some distance away on the same level. If the angle of projection is 30°, the velocity of projection is

```
19.6 m/sec
```

- 9.8 m/sec
- 4.9 m/sec
- 5.2 m/sec

Question Number: 58 Question Id: 6780949062 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A 200 m wide river flows with a velocity of 5 m/sec. A man crosses the river in the shortest time of 25 sec. If there is no flow and he swims with the same velocity, the time taken to cross the river is

Options:

$$\frac{200}{5\sqrt{3}}$$
 sec

1.

20 sec

25 sec

 $25\sqrt{2}$ sec

Question Number : 59 Question Id : 6780949063 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

A body of mass 1 Kg lies on an inclined plane of angle 60⁰ to the horizontal. If the coefficient of friction is 0.4, the frictional force along the inclined plane is

Options:

- , 1.96 N
- 0.98 N
- , 0.49
- 4 0.245 N

Question Number : 60 Question Id : 6780949064 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

A force of 20 Kg weight is required to just slide a wooden box weighing 50 Kg over ice. Then coefficient of static friction between the surfaces in contact is

Options:

0.2

```
0.1
Question Number: 61 Question Id: 6780949065 Display Question Number: Yes Single Line Question Option: No Option
Orientation: Vertical
 A cyclist comes to a skidding stop in 10m. During this process, the force on the
  cycle due to the road is 200N and is directly opposed to the motion. The work
  done by the road on the cycle is
Options:
   1000 J
   2000J
  -1000J
   -2000J
Question Number: 62 Question Id: 6780949066 Display Question Number: Yes Single Line Question Option: No Option
Orientation: Vertical
  A sphere of mass 4 Kg is dropped from a certain height. After 5s, its kinetic
                  (g=10 \text{ m/s}^2)
  energy is
Options:
   50 J
  5 KJ
Question Number: 63 Question Id: 6780949067 Display Question Number: Yes Single Line Question Option: No Option
Orientation: Vertical
  An elevator weighing 500 kg is to be lifted up at a constant velocity of 0.20 m/s.
  What would be the minimum power of the motor to be used?
Options:
   100 W
<sub>2</sub> 500 W
```

980 W 900 W Question Number: 64 Question Id: 6780949068 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** At t=0, the displacement of a particle in SHM is half its amplitude. Its initial phase is (referring to mean position) **Options:** 2π Question Number: 65 Question Id: 6780949069 Display Question Number: Yes Single Line Question Option: No Option The length of seconds pendulum is 100 cm. To have a period half of this value, the length is to be reduced by **Options:** 25 cm Question Number: 66 Question Id: 6780949070 Display Question Number: Yes Single Line Question Option: No Option Inside a big hall, the reverberation time is **Options:** directly proportional to volume inversely proportional to sound absorption

both directly proportional to volume and

inversely proportional to sound absorption

depends on temperature

Question Number: 67 Question Id: 6780949071 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The voice of lion is different from that of a mosquito because

Options:

- , the sounds have different pitch
- they are of different size
- the two voices travel with different velocities
- the sounds have different phases

Question Number: 68 Question Id: 6780949072 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A car is travelling at $\frac{V}{10}$ m/s and sounds horn of frequency 990 Hz. The apparent frequency heard by a police chasing the car at $\frac{V}{9}$ m/s (v is the velocity of sound) is

Options:

- 990 Hz
- 900 Hz
- ₃ 100 Hz
- 4 1000Hz

Question Number : 69 Question Id : 6780949073 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

When ice cube melts and becomes water, the ice-water system undergoes a change such that

- entropy of the system decreases and internal energy decreases
 - entropy of the system decreases and internal energy increases

- entropy of the system increases and internal energy increases
- entropy of the system increases and internal energy decreases

Question Number : 70 Question Id : 6780949074 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

A mass of 300 gm falls from a height of 3 m(g=9.8 m/s²). Assuming that the whole energy is converted into heat, the amount of heat produced is

Options:

- 2 cal
- 2.1 cal
- 3 4 cal
- 4.2 cal

Question Number: 71 Question Id: 6780949075 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

During an adiabatic expansion of 2 moles of a gas, the change in internal energy was found to be equal to 100 J. The work done during the process will be equal to

Options:

- zero
- ₂ -100 J
- ₂ 200 J
- 100 J

Question Number: 72 Question Id: 6780949076 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The pressure and density of a diatomic gas ($\gamma = \frac{7}{5}$) change adiabatically from

(P,d) to (P¹,d¹). If
$$\frac{d^1}{d}$$
 = 32, then $\frac{P^1}{P}$ is

- 128
- 2 32

	OFC
	Jhh
~	200
- 1	

4 64

Question Number: 73 Question Id: 6780949077 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Boyle's law holds good for an ideal gas during

Options:

- isobaric changes
- isothermal changes
- isochoric changes
- isotopic changes

Question Number: 74 Question Id: 6780949078 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The threshold frequency of metal is v_0 . When a light of frequency 4 v_0 is incident on metal then the K.E_{max} of emitted electrons is

Options:

- $2v_0h$
- $3v_0h$
- , 4 voh
- v_0h

Question Number: 75 Question Id: 6780949079 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Superconductors are _____ materials

- dielectric
- paramagnetic
- ferromagnetic
- diamagnetic

Number of Questions:	25
Display Number Panel:	Yes
Group All Questions:	No

Question Number: 76 Question Id: 6780949080 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The Pauli exclusion principle is concerned with

Options:

- Energy of orbital.
- Spin of electron.
- Energy of electron
- Angular momentum of electron

Question Number: 77 Question Id: 6780949081 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

According to Bohr's model of hydrogen atom, the following is quantized

Options:

- Linear momentum
- Linear velocity
- Angular momentum
- Angular velocity

Question Number: 78 Question Id: 6780949082 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

How many 'd' - orbitals have two perpendicular nodal planes

Options:

- Two
- 2 Three
- ₃ Four
- Five

Question Number: 79 Question Id: 6780949083 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

In sodium chloride crystal, each Na ⁺ ion is surrounded by
Options:
Two Cl ⁻ ions
Four Cl ⁻ ions
Six Cl ⁻ ions
Eight Cl ⁻ ions 4.
Question Number : 80 Question Id : 6780949084 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical
Which among the following molecule contains a π – bond
Options:
1. H ₂
2. O ₂
3. F ₂
4. HCI
Question Number: 81 Question Id: 6780949085 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Which among the following is insoluble in water?
Options:
Alcohol 1.
2. Ammonia
3. Benzene
Acetone 4.
Question Number : 82 Question Id : 6780949086 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical
The normality of 2.3 M H ₂ SO ₄ solution is
Options:
1. 0.46N
2. 0.23 N
2 3 N

Question Number: 83 Question Id: 6780949087 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

8 grams of substance of molecular weight 40 is dissolved in 250 g of water. Then the molality of the solution is

Options:

0.4

- . 0.8
- , 0.2
- , 0.6

Question Number: 84 Question Id: 6780949088 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The pH value of 0.05M Ba(OH)₂ solution is

Options:

- , 10
- 2 12
- , 13
- ₄ 11

Question Number: 85 Question Id: 6780949089 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Which of the following molecule is not a Lewis Base?

Options:

- H₂C
- BF3
- NH₃
- 4 CO

Question Number: 86 Question Id: 6780949090 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

During the electrolysis of brine, 710 g of Cl₂ was liberated at anode. The weight of NaOH formed

```
800 g
   400 g
   40 g
Question Number: 87 Question Id: 6780949091 Display Question Number: Yes Single Line Question Option: No Option
 In the Danniel cell, which electrode acts as anode?
Options:
   Cu
   Hg
    Zn
   Ρt
Question Number: 88 Question Id: 6780949092 Display Question Number: Yes Single Line Question Option: No Option
 The molar conductance of HCl is more than that of NaCl because
Options:
NaCl is more polar than KCl
  NaCl is ionic while HCl is covalent
  Ionic mobility of H<sup>+</sup> is more than that of Na<sup>+</sup>
  H get hydrated.
Question Number: 89 Question Id: 6780949093 Display Question Number: Yes Single Line Question Option: No Option
Orientation: Vertical
 The units for electrochemical equivalent are
Options:
    grams
     rams ampere
   Coulomb
   Grams per coulomb
```

Question Number: 90 Question Id: 6780949094 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Zeolite softening process removes
Options:
Only permanent hardness of water 1.
Only temporary hardness of water
Both temporary and permanent hardness of water
4. The dissolved gases in permanent hard water.
Question Number: 91 Question Id: 6780949095 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The permanent hardness of water is caused by the presence of
Options:
Bicarbonates of Ca and Mg 1.
2. Carbonates of Na and K
Chlorides and Sulphates of Ca and Mg.
Phosphates of Na and K
Question Number : 92 Question Id : 6780949096 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical
The secondary treatment of water uses to consume wastes in water.
Options:
Filtration 1.
2. Sedimentation
Chemicals 3.
Microorganisms 4.
Question Number: 93 Question Id: 6780949097 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Difficult to monitor and very dangerous form of corrosion is
Options:
Galvanic 1.
2. Pitting

Crevice 3.
Stress 4.
Question Number : 94 Question Id : 6780949098 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical
When Pt and Co are electrically connected, which one gets corroded?
Options:
1. Co
2. Pt
3. None
4. both
Question Number: 95 Question Id: 6780949099 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
What rubber was invented when Dr. Joseph C. Patrick tried to make antifreeze?
Options:
Methyl rubber 1.
Chloroprene 2.
3. Bruna N
4. Thiokol
Question Number: 96 Question Id: 6780949100 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The first plastic ever synthesized was called
Options:
1. Bakelite
2. Nylon
Dacron 3.
4. Cellulose
Question Number : 97 Question Id : 6780949101 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical
is a brand of polyester textile fiber that is wrinkle resistant and strong
Options:

Cellulose Dacron Bakelite Nylon Question Number: 98 Question Id: 6780949102 Display Question Number: Yes Single Line Question Option: No Option Water gas is a mixture of **Options:** 1 H2 + CO $N_2 + CO$ H2 + CO2 H2 + CH4 Question Number: 99 Question Id: 6780949103 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** Which of the following is not a greenhouse gas? **Options:** CO_2 water vapour Question Number: 100 Question Id: 6780949104 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** Burning of fossil fuels causes Options: Global warming Ozone depletion Acid rain Eutrophication

Number of Questions:	100	
Display Number Panel: Group All Questions:	Yes No	
Question Number: 101 Question Id: 6780949 Orientation: Vertical	9105 Display Question Number : Yes Single Line Questi	ion Option : No Option
The rate of heat dissipated in t	tance r=4 ohm is connected to a varial the resistor is maximum when the cu wn from the battery will be (I/2) when F	rrent drawn from
Options:		
1. 8 ohm		
12 ohm		
_{3.} 16 ohm		
4. 20 ohm		
Question Number: 102 Question Id: 6780949 Orientation: Vertical	0106 Display Question Number: Yes Single Line Questi	ion Option : No Option
A battery is connected to a res	sistance causing a current of 0.5 A in additional resistance of 5 Ω is connected the resistance is	
Options:		
1. 10Ω		
2. 15Ω		
3. 25Ω		
4. 30Ω		
Question Number: 103 Question Id: 6780949 Orientation: Vertical	9107 Display Question Number : Yes Single Line Questi	ion Option : No Option
Superposition theorem is not ap	pplicable for	
Options:		
Voltage calculations		
Bilateral elements		
Power calculations		

Passive elements

 $Question\ Number: 104\ Question\ Id: 6780949108\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

A load is connected to an active network. At the terminals to which the load is connected, R_{th} =10 Ω and V_{th} =60 V . The maximum power supplied to the load is
Options : 1. 360W
2. 90W
3. 60W
4. 10W
Question Number: 105 Question Id: 6780949109 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Which of the following is not a conducting material?
Options: 1. Copper
Tungsten 2.
Germanium 3.
4. Platinum
Question Number: 106 Question Id: 6780949110 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
For an insulating material, dielectric strength and dielectric loss should be respectively
Options: High and high
Low and high
High and low
4. Low and low
Question Number: 107 Question Id: 6780949111 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Which one of the following materials has the highest dielectric strength?
Options: Polystyrene
2. Marble
3. Cotton
Transformer coil 4.

Question Number : 108 Question Id : 6780949112 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical
Armature core of DC machine is laminated to reduce
Options:
Eddy current loss
2. Hysteresis loss
3. Copper loss
4. Mechanical loss
Question Number : 109 Question Id : 6780949113 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical
A shunt generator has a critical field resistance of 200Ω at a speed of 800 r.p.m. If the speed of the generator is increased to 1000 r.p.m. What is the change in the critical field resistance of the generator?
Options:
Decrease to 160Ω
Remains the same at 200Ω
$_{3.}$ Increase to 250Ω
Increase to 312.5Ω
Question Number: 110 Question Id: 6780949114 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The overall efficiency of a DC shunt generator is maximum when its variable loss equals
Options:
1. The stray loss
2. The iron loss
3. Constant loss
4. Mechanical loss
Question Number: 111 Question Id: 6780949115 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
In a machine, for the same number of slots and same current in the armature conductor, which one of the following will induce higher emf?
Options:
Lap winding
Wave winding

Compensating winding Pole winding Question Number: 112 Question Id: 6780949116 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** A series motor drawing an armature current of Ia is operating under saturated magnetic conditions. The torque developed in the motor is proportional to **Options:** 1/la la Question Number: 113 Question Id: 6780949117 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** When is the mechanical power developed by a DC motor maximum? Back e.m.f. is equal to applied voltage Back e.m.f. is equal to zero Back e.m.f. is equal to half the applied voltage Back e.m.f. is square of applied voltage Question Number: 114 Question Id: 6780949118 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** Which of the following are the variable losses in a rotating machine? **Options:** Core loss and mechanical loss Core loss and stray load loss opper loss and core loss opper loss and stray load loss Question Number: 115 Question Id: 6780949119 Display Question Number: Yes Single Line Question Option: No Option

The speed of a DC motor is related to the back emf and flux in the following ways:

Orientation: Vertical

Directly proportional to flux and inversely proportional to back emf
Directly proportional to back emf and inversely proportional to flux
Inversely proportional to flux and inversely proportional to back emf
Directly proportional to flux and directly proportional to back emf
Question Number: 116 Question Id: 6780949120 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
For controlling the vibration of the disc of AC energy meter, damping torque is produced by
Options:
Eddy current
2. Chemical effect
3. Electrostatic effect
4. Magnetic effect
Question Number: 117 Question Id: 6780949121 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Which one of the following bridges will be used for the measurement of very low resistance?
Options:
, Kelvin bridge
1. Reivin bridge
2. Maxwell's bridge
Wheatstone bridge 3.
4. Hay's bridge
Question Number : 118 Question Id : 6780949122 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical
A current transformer has a phase error of +3 ⁰ . The phase angle between the primary and secondary current is
Options:
1. 3 ⁰
_{2.} 177 ⁰
3. 180 ⁰
4. 183 ⁰

Question Number: 119 Question Id: 6780949123 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
If one of the control springs of a Permanent Magnet Moving Coil ammeter is broken then, when connected it will read
Options:
Zero 1.
2. Half of the correct value
Twice the correct value
An infinite value
Question Number: 120 Question Id: 6780949124 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The circuit comprises a coil of resistance R and inductance L, in parallel with an ideal capacitor C. At the resonant frequency, the impedance of the parallel combination is
Options:
1. R
2. (LC)/R
3. L/(RC)
4. Infinity
Question Number: 121 Question Id: 6780949125 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
In RLC circuits, the current at resonance is
Options:
Maximum in series RLC and minimum in parallel RLC circuit
Maximum in parallel circuit and minimum in series circuit
3. Maximum in both circuits
Minimum in both circuits 4.
Question Number: 122 Question Id: 6780949126 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The power consumed by a coil is 300 W when connected to a 30 V DC source and 108 W when connected to a 30 V AC source. The reactance of the coil is
Options:
1. 3Ω
$_{2.}$ 4Ω

3 5Ω
4. 6.67Ω
Question Number: 123 Question Id: 6780949127 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
If the source of 200 V rms supplies active power of 600 W and reactive power of 800 VAR. The rms current drawn from the source
Options:
1. 10 A
3 5 A

- 3 3.75 A
- 4. 2.5 A

Question Number: 124 Question Id: 6780949128 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

A 3-phase delta connected symmetrical load consumes P watt of power from a balanced supply. If the same load is connected in star to the same supply, then what is the power consumption?

Options:

Question Number: 125 Question Id: 6780949129 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

The desirable properties of transformer core material are

Options:

- Low permeability and low hysteresis loss
- High permeability and high hysteresis loss
- ligh permeability and low hysteresis loss
- Low permeability and high hysteresis loss

Question Number: 126 Question Id: 6780949130 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

Two single phase 100 kVA transformers, each having different leakage impedances are connected in parallel. When a load of 150 kVA at 0.8 power factor lagging is applied then
Options:
Both transformers will operate at power factor more than 0.8 lagging
Both transformers will operate at power factor less than 0.8 lagging 2.
One of the transformers will operate at power factor more than 0.8 lagging and other will operate at power factor less than 0.8 lagging 3.
Both transformers will operate at identical power factors 4.
Question Number: 127 Question Id: 6780949131 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The most essential condition for parallel operation of two 1-φ transformers is that they should have the same
Options:
1. kVA rating
2. Percentage impedance
3. Polarity
4. Voltage ratio
Question Number: 128 Question Id: 6780949132 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
It is advisable to use auto-transformer if the transformation ratio is
Options:
Greater than 1
2. Near to 1
3. 0.25
4. 0.5
Question Number: 129 Question Id: 6780949133 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
In a transformer, zero voltage regulation at full load is
Options:
Not possible
Possible at leading power factor load

Possible at lagging power factor load Possible at unity power factor load Question Number: 130 Question Id: 6780949134 Display Question Number: Yes Single Line Question Option: No Option If the frequency of input voltage of a transformer is increased keeping the magnitude of voltage unchanged, then **Options:** Both hysteresis loss and eddy current loss in the core will increase Hysteresis loss will increase but eddy current loss in the core will decrease Hysteresis loss will decrease but eddy current loss will increase Hysteresis loss will decrease but eddy current loss will remain unchanged Question Number: 131 Question Id: 6780949135 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** Which of the following connection of transformer will give the highest secondary voltage? **Options:** Delta primary, delta secondary Delta primary, star secondary Star primary, star secondary Star primary, delta secondar Question Number: 132 Question Id.: 6780949136 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** Two mechanically coupled alternators deliver power at 50 Hz and 60 Hz respectively. The highest speed of the alternator is **Options:** 3600 rpm

_{2.} 3000 rpm

600 rpm

₄ 500 rpm

Question Number: 133 Question Id: 6780949137 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Which one of the following methods would give a higher than actual value of regulation of an alternator?

Options:
ZPF method
2. MMF method
3. EMF method
4. ASA method
Question Number: 134 Question Id: 6780949138 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
In synchronous alternator, which of the following coils will have emf closer to sine wave form?
Options:
Concentrated winding in full pitch coils
Concentrated winding in short pitch coils
Distributed winding in full pitch coils
Distributed winding in short pitch coils 4.
Question Number: 135 Question Id: 6780949139 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
V-curve of synchronous motor shows the variation of
Options:
Armature current and DC excitation at constant load
Supply voltage and field current at constant excitation
Power factor and supply voltage during hunting 3.
Supply voltage and excitation current at constant load
Question Number : 136 Question Id : 6780949140 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical
An ideal synchronous motor has no starting torque because the Options:
Rotor is made up of salient poles
Relative velocity between the stator and the rotor mmf's is zero
Relative velocity between stator and rotor mmf's is not zero
Rotor winding is highly reactive 4.

Question Number: 137 Question Id: 6780949141 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
A synchronous motor is operating on no load at unity power factor. If the field current is increased, the power factor will become
Options:
Leading and the current will decrease
Lagging and the current will increase
Lagging and the current will decrease
Leading and the current will increase 4.
Question Number: 138 Question Id: 6780949142 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
When the supply voltage for induction motor is reduced by 10% the maximum running torque will nearly
Options:
Decrease by 10%
Decrease by 20%
Increase by 10%
Increase by 20%
Question Number: 139 Question Id: 6780949143 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
As compared to DOL starting, a cage induction motor with star-delta starting shall have
Options:
More starting torque
2. More starting current
Reduced starting current 3.
Smoother acceleration 4.
Question Number: 140 Question Id: 6780949144 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
A 6-pole, 50 Hz single phase induction motor runs at a speed 900 rpm. The frequency/frequencies of current in the cage rotor will be
Options:
1. 5 Hz

- 5 Hz, 55 Hz
- 5 Hz, 95 Hz
- 55 Hz, 95 Hz

Question Number: 141 Question Id: 6780949145 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

The Torque - Slip characteristics of a poly phase Induction becomes almost linear at small values of slip, because in this range of slips

Options:

The effective rotor circuit resistance is very large compared to the rotor reactance

- The rotor resistance is equals to the stator resistance
- The rotor resistance is equals to the rotor reactance
 - The rotor reactance is equals to the stator reactance

Question Number: 142 Question Id: 6780949146 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

A Capacitor - start Single - phase Induction motor is used for

Options:

- Easy start loads
- Medium start loads
- Hard start loads
- Any type of start loads

Question Number: 143 Question Id: 6780949147 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

In a Split - Phase motor, the running winding should have

Options:

- High resistance and low inductance
- High resistance as well as high inductance
- ow resistance and high inductance.
- Low resistance as well as low inductance

Question Number: 144 Question Id: 6780949148 Display Question Number: Yes Single Line Question Option: No Option

Orientation: Vertical

In pumped storage scheme , the generator is also used as
Options:
Induction generator or Synchronous condenser
Induction generator or Synchronous motor
Synchronous generator or induction generator 3.
Synchronous motor or synchronous condenser 4.
Question Number: 145 Question Id: 6780949149 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The flow-duration curve at a given head of a hydro electric plant is used to determine
the
Options:
Total power available at the site
Total units of energy available
3. Load-factor of the plant
4. Diversity-factor for the plant
Question Number : 146 Question Id : 6780949150 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical
In a nuclear power station using Boiling Water Reactor (BWR), water is used as
Options: A moderator but not as a coolant 1.
A coolant but not as a moderator
Both moderator and coolant
Neither moderator nor coolant
Question Number: 147 Question Id: 6780949151 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
In a nuclear reactor, chain reaction is controlled by introducing
Options:
1. Iron rods
2. Cadmium rods
3. Graphite rods
4. Brass rods

Question Number: 148 Question Id: 6780949152 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** For harnessing low variable water heads, the suitable hydraulic turbine with reaction and adjustable vanes runners is: **Options:** Francis Impeller Kaplan Pelton Question Number: 149 Question Id: 6780949153 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** The re-striking voltage is measured in **Options:** RMS value Peak value Instantaneous value Average value Question Number: 150 Question Id: 6780949154 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** The rate of rise of re-striking voltage (RRRV) is dependent upon _____ **Options:** Resistance of the system on Inductance of the system only Capacitance of the system only Inductance and capacitance of system Question Number: 151 Question Id: 6780949155 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical A Buchholtz relay is used for ____ **Options:** Protection of transformer against all internal faults Protection of a transformer against external faults Protection of a transformer against both internal and external faults

Protection of induction motors
Question Number: 152 Question Id: 6780949156 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Which one of the following grounding methods is used to reduce the tower footing resistance where an earth resistance is low?
Options:
Single driven rod
2. Multiple rods
Counterpoises 3.
4. Plates
Question Number: 153 Question Id: 6780949157 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
A lighting arrestor connected the line and earth in power system
Options:
Protects the terminal equipment against travelling surges
Protects the transmission line against direct lighting stroke
Suppresses high frequency oscillations in the line
Reflects back the travelling wave approaching it
Question Number: 154 Question Id: 6780949158 Display Question Number: Yes Single Line Question Option: No Option
Orientation: Vertical
For a transmission line with resistance R, reactance X, and negligible capacitance, the transmission line parameter A is
Options:
1. 0
2. 1
3. R+jX
4. R+X
Question Number: 155 Question Id: 6780949159 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The insulation resistance of a single core cable is 200 M Ω /km. The insulation resistance for 5 km length is
Options: $_{1}$ 40 M Ω

_{2.} 1000 MΩ

200 MΩ

, 8 MΩ

Question Number: 156 Question Id: 6780949160 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Which one of the following equation is correct?

Options:

- -AB + CD=-1
- AD + CB = 1
- 3. AB-CD = -1
 - -AD + BC = -1

Question Number: 157 Question Id: 6780949161 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

When is the Ferranti effect on long overhead lines experienced?

Options:

- The line is lightly loaded
- The line is heavily loaded
 - The line is fully loaded
- The power factor is unity

Question Number: 158 Question Id: 6780949162 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Whenever the conductors are dead-ended or there is a change in the direction of transmission line, the insulators used are of the _____

Options:

- . Pin type
- Suspension type
- Strain type
- Shackle type

Question Number : 159 Question Id : 6780949163 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

In a three unit insulator string, voltage across the lowest unit is 17.5 kV and string efficiency is 84.28%. The total voltage across the string will be equal to _
Options:
1. 8.825 kV
44.248 kV
3. 88.25 kV
442.5 kV
Question Number : 160 Question Id : 6780949164 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical
In the case of a HVDC system, there is
Options:
Charging current but no skin effect
No charging current but skin effect
Neither charging current nor skin effect 3.
4. Both charging current and skin effect
Question Number: 161 Question Id: 6780949165 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
In an HVDC system:
Options:
Both generation and distribution are DC
1.
2. Generation is AC and distribution is DC
3. Generation is DC and distribution is AC
Both generation and distribution are AC
Question Number: 162 Question Id: 6780949166 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Disruptive corona begins in smooth cylindrical conductors in air at NTP if the electric field intensity at the conductor surface goes up to
Options:
1. 21.1 kV (rms)/cm
21.1 kV (peak) / cm
3. 21.1 kV (average) /cm
4. 21.1 V (rms) / cm

	6780949167 Display Question Number : Yes Single Line Question Option : No Option
Orientation : Vertical	
the load at the receiving	ne, voltage regulation is zero when the power factor angle of end side is equal to
Options:	
1. tan ⁻¹ (X/R)	
tan ⁻¹ (R/x)	
_{3.} tan ⁻¹ (X/Z)	
$\tan^{-1}(R/Z)$	
J.,	
Question Number: 164 Question Id: Orientation: Vertical	6780949168 Display Question Number: Yes Single Line Question Option: No Option
Long distance railways u	se which of the following?
Options:	
200 V DC	
2F Id / Single phase AC	
25 kV two phase AC	
4. 25 kV three phase AC	×
	6780949169 Display Question Number: Yes Single Line Question Option: No Option
Orientation : Vertical Ouadrilateral speed -time	e curve pertains to which of the following services?
	rearre periodis to which of the following services:
Options: Main line service	
1.	
2. Urban service	
3. Sub-urban service	
Urban and Sub-urban s	service
4.	
Question Number: 166 Question Id: Orientation: Vertical	6780949170 Display Question Number : Yes Single Line Question Option : No Option
In case of	free running and coasting periods are generally long
Options:	
Main line service	
1.	
2. Urban service	

3.	Sub-urban service
4.	Urban and Sub-urban service
	estion Number: 167 Question Id: 6780949171 Display Question Number: Yes Single Line Question Option: No Option entation: Vertical
Tł	ne voltage used for suburban trains in DC system is usually
	ions:
1.	12 V
2.	24 V
3.	220 V
4.	600 to 750 V
Que Orio	estion Number: 168 Question Id: 6780949172 Display Question Number: Yes Single Line Question Option: No Option entation: Vertical
	hich of the following will not decrease as a result of introduction of negative edback?
Opt	ions:
1.	nstability
2.	Bandwidth
3.	Overall gain
4.	Distortion
Que Orio	estion Number: 169 Question Id: 6780949173 Display Question Number: Yes Single Line Question Option: No Option entation: Vertical
In	a closed loop control system
Opt	ions :
1.	Control action is independent of the output
2.	Output is independent of input
3.	There is no feedback
4.	Control action is dependent on the output
	estion Number: 170 Question Id: 6780949174 Display Question Number: Yes Single Line Question Option: No Option entation: Vertical
	he effect of integral control on the steady state error e_{ss} and that on the relative ability R_s of the system is
Opt	ions:

Both are increased
ess is increased but Rs is reduced
ess is reduced but Rs is increased
Both are reduced 4.
Question Number: 171 Question Id: 6780949175 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
As compared to a closed loop system, an open loop system is
Options:
More stable as well as more accurate
Less stable as well as less accurate
More stable but less accurate
Less stable but more accurate 4.
Question Number: 172 Question Id: 6780949176 Display Question Number: Yes-Single Line Question Option: No Option Orientation: Vertical
A fuse is
Options:
Always connected in series with the circuit
Always connected in parallel with the circuit
Normally connected in series with the circuit
Normally connected in parallel with the circuit
Question Number: 173 Question Id: 6780949177 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
As per recommendation of ISI the maximum load that can be connected in one sub- circuit is
Options: 800 Watts
2 1000 Watts
1600 Watts
500 Watts

 $Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Lamps in street lighting are all connected in	
Options: Series 1.	
2. Parallel	
3. Series - Parallel	
End -to -end 4.	
Question Number: 175 Question Id: 6780949179 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical	
The resistance of earth should be	
Options:	
1. Infinite	
2. High	
3. Low	
The minimum possible 4.	
Question Number: 176 Question Id: 6780949180 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical	
A source follower using an FET usually has a voltage gain which is	
Options:	
Greater than 100	
2. Slightly less than unity but positive	
Exactly unity but negative 3.	
4. About -10	
Question Number : 177 Question Id : 6780949181 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical	
Dark current in a semiconductor photodiode is	
Options:	
The forward bias current	
The forward saturation current	
The reverse saturation current	
4. The transient current	

Question Number: 178 Question Id: 6780949182 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** In a centre tap full wave rectifier, 100 V is the peak voltage between the centre tap and one end of the secondary. What is the maximum voltage across the reverse biased diode?

Options:

- 200 V
- 141 V
- 100 V
 - 86 V

Question Number: 179 Question Id: 6780949183 Display Question Number: Yes Single Line Question Option: No Option

In an inverting amplifier, the two input terminals of an ideal op-amp are the same potential because _

Options:

The two input terminals are directly shorted internally

- The input impedance of the op-amp is infinity
- Common Mode Rejection Ratio is infinity

The open loop gain of the op-amp is infinity

Question Number: 180 Question Id: 6780949184 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

If the differential and common mode gains of a differential amplifier are 50 and 0.2 respectively, then the Common Mode Rejection Ratio will be

Options:

- 1 10

Question Number: 181 Question Id: 6780949185 Display Question Number: Yes Single Line Question Option: No Option

The Barkhausen criterion for sustained oscillations is

Options:

- 1 Aβ=1
- $_{2} |A\beta| \geq 1$

 $|A\beta| < 1$

$$\angle A\beta = 180^{\circ}$$

Question Number: 182 Question Id: 6780949186 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

In an RC phase shift oscillator, the minimum number of RC networks to be connected in cascade will be

Options:

- One
- 2 Two
- 3 Three
- Fou

Question Number: 183 Question Id: 6780949187 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The decimal equivalent of the hexadecimal number (BAD) is _____

Options:

- , 111013
- 5929
- 3416
- 2989

Question Number: 184 Question Id: 6780949188 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The function F = ABC + ABC + ABC + ABC can be reduced to which one of the following

Options:

- 1 F=A
- , F=AE
- 3. F=AB0
- , F=B

Question Number: 185 Question Id: 6780949189 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If the output of a logic gate is '1' when all its inputs are at logic '0', the gate is either

Options:

1. A NAND or a NOR
An AND or an EX-NOR
An OR or a NAND
An EX-OR or an EX-NOR
Question Number: 186 Question Id: 6780949190 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Number of comparators required to build a 5-bit Analog to Digital converter is
Options:
1. 5
2 11
3. 21
4. 31
Question Number: 187 Question Id: 6780949191 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Power electronic device with poor turn-off gain is
Options : A symmetrical thyristor
Options: A symmetrical thyristor 1.
Options : A symmetrical thyristor
Options: A symmetrical thyristor A conventional thyristor
Options: A symmetrical thyristor 1. A conventional thyristor 2. Power bipolar junction transistor
Options: A symmetrical thyristor A conventional thyristor Power bipolar junction transistor 3.
Options: A symmetrical thyristor 1. A conventional thyristor 2. Power bipolar junction transistor 3. Gate turn-off thyristor
Options: A symmetrical thyristor A conventional thyristor Power bipolar junction transistor Gate turn-off thyristor 4. Question Number: 188 Question Id: 6780949192 Display Question Number: Yes Single Line Question Option: No Option
Options: A symmetrical thyristor A conventional thyristor Power bipolar junction transistor Gate turn-off thyristor 4. Question Number: 188 Question Id: 6780949192 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Options: A symmetrical thyristor A conventional thyristor Power bipolar junction transistor Gate turn-off thyristor 4. Question Number: 188 Question Id: 6780949192 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical A thyristor equivalent of a thyratron tube is a Options:
Options: A symmetrical thyristor A conventional thyristor Power bipolar junction transistor Gate turn-off thyristor Unustion Number: 188 Question Id: 6780949192 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical A thyristor equivalent of a thyratron tube is a Options: SCR LLIT
Options: A symmetrical thyristor A conventional thyristor Power bipolar junction transistor Gate turn-off thyristor 4. Question Number: 188 Question Id: 6780949192 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical A thyristor equivalent of a thyratron tube is a Options: UJT DIAC

Question Number: 189 Question Id: 6780949193 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Which of the following does not cause damage of an SCR?
Options:
High current
High rate of rise of current
2.
High temperature rise
3.
High rate of rise of voltage
Question Number: 190 Question Id: 6780949194 Display Question Number: Yes Single Line Question Option: No Option
Orientation : Vertical
Which one of the following power semiconductor device has bi-directional current
capability?
Options:
SCR
MOSFET
IGBT
3.
TRIAC
4.
One of a New Level 101 One of a 11 (790040105 Pinter One in New Level 2014 Pinter Visit Civil 21 (2014 Pinter Visit Pinter
Question Number: 191 Question Id: 6780949195 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
An advantage of a Cycloconverter is
Options:
All the second s
Very good power factor
Requires few number of thyristors
2.
Commutation failure does not short circuit the source
3.
Load commutation to possible
Load commutation is possible 4.
4.
Question Number: 192 Question Id: 6780949196 Display Question Number: Yes Single Line Question Option: No Option
Orientation : Vertical
In single phase to single phase cycloconverter, if α_1 and α_2 are the trigger angles of
positive converter and negative converter, then
Options:
$\alpha_1 + \alpha_2 = \pi/2$
1.
$a_1 + a_2 = \pi$
$\frac{1}{2} \alpha_1 + \alpha_2 = \pi$
$a_1 + a_2 = \pi$

 $\alpha_1 + \alpha_2 = 2\pi$ Question Number: 193 Question Id: 6780949197 Display Question Number: Yes Single Line Question Option: No Option A four quadrant chopper cannot be operated as **Options:** One quadrant chopper Cycloconverter Inverter Bidirectional rectifier Question Number: 194 Question Id: 6780949198 Display Question Number: Yes Single Line Question Option: No Option If an AC chopper is feeding an inductive load, the firing pulse to the SCR **Options:** May have a width equal to turn ON time of the SCR Should be a series of pulses of short duration Should be a single pulse of long duration Should be a train of pulses of duration equals to the conduction period of the SCR Question Number: 195 Question Id: 6780949199 Display Question Number: Yes Single Line Question Option: No Option A converter which can operate both in 3-pulse and 6-pulse modes is _ **Options:** 1-phase full converter 3-phase half wave converter 3-phase semi converter chase full converter

Question Number: 196 Question Id: 6780949200 Display Question Number: Yes Single Line Question Option: No Option

Which one of the following is the main advantage of SMPS over linear power supply?

No transformer is required

Only one stage of conversion
3. No filter is required
4. Low power dissipation
Question Number: 197 Question Id: 6780949201 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Among the following special function registers which is not bit addressable?
Options: 1. PSW 2 TCON
3. SCON
4. PCON
Question Number: 198 Question Id: 6780949202 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Which of the following instruction represents Indexed addressing?
Options:
1. MOV R ₀ , 89H
MOV A, #100
JMP @A+DPTR 3.
4. ADD A, R ₇
Question Number: 199 Question Id: 6780949203 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Which of the following 8051 interfacing peripheral acts as a Programmable interrupt controller?
Options:
8251
2 8259
0.000
3. 0230
4. 8257
Question Number: 200 Question Id: 6780949204 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
In 8051 microcontroller, register is used to control the operation of the
serial port.
Options:

- 1. TMOD
- 2. PSW
- PCON
- 4. SCON

www.Polytechadda.com